Problem #1 – 10pts: Looking at Appendix A Eq. A.15, for \(\{x\} = [x, x, \ldots, x] \) and \(\varphi = \frac{1}{2} \) \(\{x\}^T[A]\{x\} \) with \([A] \) being independent of \(x \).

a. Show the following for \([A] \) being an arbitrary \(n \times n \) matrix

\[
\frac{\partial \varphi}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial \varphi}{\partial x_1} & \frac{\partial \varphi}{\partial x_2} & \cdots & \frac{\partial \varphi}{\partial x_n} \end{bmatrix}^T = \frac{1}{2} (\{A\} + [A]^T)\{x\}
\]

b. Show if \([A] \) is an arbitrary and symmetric \(n \times n \) matrix

\[
\frac{\partial \varphi}{\partial \mathbf{x}} = [A]\{x\} \quad \text{and} \quad \frac{\partial^2 \varphi}{\partial x_i \partial x_j} = A_{ij} = A_{ji}
\]

Problem #2 – 7pts:

8.2-1 Let \([E'] \) be 3 by 3, as for a plane stress problem. Show that Eq. 8.2-10 yields \([E'] = [E] \) if the material is isotropic.

\[
[E] = [T_\varepsilon]^T[E'][T_\varepsilon] \quad (8.2-10)
\]

Problem #3 – 10pts: Determine the magnitude and location of the maximum deflection od the beam AB in terms of \(b, L, E, I \) and \(P \). You may assume that \(a > b \).
Problem #4 – 10pts: A body is experiencing a variable stress state as shown where \(X_i \) indicate coordinates in 3D space. Comment if the body is in static equilibrium and if not, what balancing force is required to establish equilibrium. Here, \(B \) and \(b \) are constants.

\[
[\sigma] = B \begin{bmatrix}
X_1^2 X_2 & (b^2 - X_2^2) X_1 & 0 \\
(b^2 - X_2^2) X_1 & \frac{1}{3} (X_2^2 - 3b^2) X_2 & 0 \\
0 & 0 & 2bX_2^2
\end{bmatrix}
\]

Problem #5 – 6pts: For the infinitely long, half cylinder body with radius \(a \), as shown below where \(X_1 \) and \(X_2 \) indicate coordinate bases, provide a complete statement of all the boundary conditions in 3D. The body is exposed to a uniform traction load \(q \) pointing downward on the top surface.

Note: Do not attempt to solve the system for unknown stress and strain fields.

Problem #6 – 12pts:

The plane structures shown consist of rigid weightless bars connected by linear springs with stiffness \(k \). Degrees of freedom are horizontal translation \(\theta_i \) for \(i = 1, 2 \) as shown. Vertical motion and out of plane displacements are not allowed. Determine the structural stiffness matrix for each case by enforcing equilibrium.

Hint: Linear elasticity follows superposition principal. So you can separate degrees of freedom.